Novel visualization for curriculum in silico using syllabus by a combination of cosine similarity, multidimensional scaling methods, and scatter plot: Dynamic curriculum mapping (DCM) for syllabus

<table>
<thead>
<tr>
<th>報道の会報</th>
<th>講演の会報</th>
<th>講演の会報</th>
<th>講演の会報</th>
<th>講演の会報</th>
<th>講演の会報</th>
</tr>
</thead>
<tbody>
<tr>
<td>報道的</td>
<td>講演的</td>
<td>講演的</td>
<td>講演的</td>
<td>講演的</td>
<td>講演的</td>
</tr>
<tr>
<td>号数</td>
<td>号数</td>
<td>号数</td>
<td>号数</td>
<td>号数</td>
<td>号数</td>
</tr>
<tr>
<td>年</td>
<td>年</td>
<td>年</td>
<td>年</td>
<td>年</td>
<td>年</td>
</tr>
<tr>
<td>URL</td>
<td>URL</td>
<td>URL</td>
<td>URL</td>
<td>URL</td>
<td>URL</td>
</tr>
</tbody>
</table>
Novel visualization for curriculum in silico using syllabus by a combination of cosine similarity, multidimensional scaling methods, and scatter plot: Dynamic curriculum mapping (DCM) for syllabus

Kunihiko TAKAMATSU¹,²,³,⁴, Katsuhiko MURAKAMI⁵, Raphael-Joel Wei Lim, and Yasuo NAKATA¹,⁶

Summary

Japan’s Ministry of Education, Culture, Sports, Science and Technology recently recommended that higher learning institutions publicly disclose their course syllabuses and curriculum maps as part of a larger effort to improve the quality of education. Two well-known concerns regarding curriculum maps exist. First, curriculum maps do not include all the curricula of a given university. Second, the construction of a new map every year is difficult for most universities. To address each of these problems, we developed a novel visualization for curriculum using syllabuses by a combination of cosine similarity, multidimensional scaling methods, and scatterplots. We call this method dynamic curriculum mapping (DCM).

Key words: dynamic curriculum mapping (DCM), syllabus, multidimensional scaling methods

要旨

近年、文部科学省は、高等教育機関に対し、教育の質保証や実質化を求めている。その一環として、様々な大学において、教育の質改善に重要な役割を果たすカリキュラムマップが作成されている。しかしながら、カリキュラムマップには、毎年の更新が難しいなどの問題があることがわかっている。そこで我々は、これらの問題を解決するために、シラバスをもとに、コサイン類似度と多次元尺度法と散布図を組み合わせて作成する新しいカリキュラムマップを開発し、動的カリキュラムマップと名付けた。本学のシラバスをもとに、この動的カリキュラムマップを作成したので、併せて報告する。

キーワード：動的カリキュラムマップ（DCM）、シラバスと多次元尺度構成法

¹) 教育イノベーション機構 2) 保健科学部医療検査学科 3) KTU 大学研究開発センター
4) ライフサイエンス研究センター 5) 東京工科大学応用生物学部 6) 保健科学部看護学科

神戸常盤大学紀要 第 10 号 2017
Introduction

In 1991, Japan’s Ministry of Education, Culture, Sports, Science and Technology (MEXT) recommended a system of self-review and self-evaluation to be implemented by universities and colleges in an effort to improve the quality of higher education and research. Institutions that participated in the self-review process naturally began to use syllabuses as well, which provided a way for universities and colleges to report the results of self-evaluation publicly. By 1992, eighty Japanese universities had introduced the use of course syllabuses; by 1994, 176 institutions had done the same; and by 2006, nearly all Japanese institutions of higher education had followed suit, with all but four percent of institutions having implemented this practice.

Stanford University defines a syllabus to students as follows: “...your guide to a course and what will be expected of you in the course. Generally, it will include course policies, rules and regulations, required texts, and a schedule of assignments. A syllabus can tell you nearly everything you need to know about how a course will be run and what will be expected of you.”

A 2008 report conducted by MEXT’s Central Council for Education placed great emphasis on continued efforts to improve the general quality of higher education in Japan. To this end, curriculum maps, as a way of understanding and achieving learning outcomes, play a key role.

The curriculum map was first developed at Yamaguchi University in Japan. However, the original concept of a curriculum map was defined by Walter Wager in terms of instructional curriculum mapping (ICM) in 1976. ICM was created as a way to visualize each item in a given curriculum and was introduced into Japanese medical education in the 1990s. Recently, independently run organizations responsible for the evaluation of Japanese universities have enforced the use of curriculum maps as a standard tool for curriculum assessment. While this means that most institutions must create curriculum maps, it is difficult to create a single curriculum map that includes all the curricula of a given college or university.

The plan, do, check, act (PDCA) cycle was introduced in a 1950 lecture by Dr. W. Edwards Deming. In the last decade, PDCA has been applied in endeavors to improve the quality of Japanese higher education.

Curriculum maps can be used to improve a curriculum in the check and act stages of the PDCA cycle. However, as mentioned above, the construction of a new curriculum map every year is decidedly difficult, because it must be reconstructed repeatedly by any given faculty.

Curriculum maps are useful for students, who need to understand the relationships among courses and lectures as they study. When teachers design or plot curriculum maps, they are required to choose x and y axes. In many cases, such plotting is discussed among faculty during faculty development activities. To assist such faculty by addressing the problems involved in the process, we propose in this article a novel kind of curriculum mapping procedure, which we call dynamic curriculum mapping (DCM), as set out below.
Methods

Cosine similarity for a vector space

Cosine similarity can be used as a method to measure the difference between documents. Cosine similarity is defined by

\[
\cos(\vec{a}, \vec{b}) := \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \|\vec{b}\|} = \frac{\sum_{i=1}^{|V|} a_i b_i}{\sqrt{\sum_{i=1}^{|V|} a_i^2} \cdot \sqrt{\sum_{i=1}^{|V|} b_i^2}}
\]

Cosine similarity is a measure of similarity among vectors. Because in this paper a vector means a syllabus, cosine similarity entails similarity between two syllabuses. The maximum value of cosine similarity is 1, and the minimum is -1. When two syllabuses are the same, cosine similarity is 1.

Cosine similarity for normalized vectors is defined by

\[
\cos(\vec{a}, \vec{b}) := \frac{\vec{a} \cdot \vec{b}}{\sum_{i=1}^{|V|} a_i b_i}
\]

Preparation to calculate cosine similarity

To calculate cosine similarity, we prepared a vector space in which each vector represented a syllabus of a course offered by Kobe Tokiwa University and Kobe Tokiwa College in 2015. Each syllabus was freely available on the institution’s official homepage\(^\text{10}\)

Each syllabus was available in Portable Document Format (PDF). Because cosine similarity is defined for vectors, we computed a vector representation of each syllabus. We first converted the PDF files to plain text using an open-source UNIX command-line tool called pdftotext, encoding the text in UTF-8\(^\text{15}\).

We then performed morphological analysis of the Japanese language in each file using MeCab\(^\text{16}\). MeCab comprises open-source software and a tool for morphological analysis developed by Taku Kudo in 2005. Using MeCab, we reduced each syllabus to a collection of word frequencies.

Finally, we calculated the cosine similarity between each resulting vector, each of which represented a syllabus. Note that the dimension of the vector space was equal to the total number of distinct words used in the collection of all syllabuses.

Results and Discussion

Kobe Tokiwa University has three departments, namely Medical Technology, Nursing, and Education. Kobe Tokiwa College has only one department, namely Oral Health. These four departments had 71, 117, 126, and 75 syllabuses, respectively, giving a total of 390 syllabuses.

The cosine similarities of each possible pair of syllabuses can be represented by a 390 × 390 matrix in which each entry in the matrix is the cosine similarity between two syllabuses represented by
corresponding rows and columns. It is trivial to show that the cosine similarity matrix is a symmetric matrix with a diagonal of 1s, as in the cosine similarity matrix for our syllabuses below:

\[(390 \times 390 - 390) \div 2 = 75855.\]

We visualized the cosine similarity matrix using multidimensional scaling (MDS) methods. MDS essentially reduces the 390-dimensional representation of our syllabuses to a 2-dimensional one while preserving the distances (representing similarity) between each document. This method produced a

Extended Figure 1: Scatterplot of cosine similarity between each syllabus, created using MDS. The x and y axes were defined by MDS. Distance of each syllabus in 390 dimensions is maintained in 2 dimension by MDS. Black, red, green, and blue letters show syllabuses from the Departments of Education, Medical Technology, Nursing, and Oral Health, respectively. Japanese subject names are used because Kobe Tokiwa University does not provide full English names. (see details in the extended figure in this article’s Online Repository at https://kobe-tokiwa.repo.nii.ac.jp)
scatterplot of x and y locations in two dimensions for our 390 syllabuses. The x and y axes were defined by MDS. The x and y axes of MDS are similar to the first and second principal components of principal component analysis, respectively.

Because the resulting scatterplot is too big to fit in an A4-sized figure, we present the plot in PDF as Extended Figure 1 (see Extended Figure 1 in this article’s Online Repository at https://kobe-tokiwa.repo.nii.ac.jp/). In Extended Figure 1, black, red, green, and blue letters represent the syllabuses of the four departments of Kobe Tokiwa University and Kobe Tokiwa College.

Several groups, or islands, of syllabuses can be seen in Extended Figure 1, which we have classified into three categories. The first category comprises the set of points belonging to an island of syllabuses that involve only one department (Figure 1). The second category is defined by points that belong to islands that involve at least two departments but fewer than three departments (Figure 2), and the third category is defined by the set of points belonging to islands with syllabuses involving three or more departments (Figure 3).

A category one island (Figure 1) can be seen at the edge of Extended Figure 1. Unsurprisingly, this island contains syllabuses of courses that focus on practical training and career paths, which happen to be similar topics.

There is only one category two island (Figure 2). This island includes syllabuses of the departments of Nursing and Oral Health combined. Syllabuses of courses in the former department again deal with practical training, while those of the latter pertain mostly to career paths, which is somewhat analogous to the category one island above.

Figure 1. Category One Island: Island that consists of syllabuses from only one department. T indicates the Department of Oral Health. The Chinese characters 腔療補助実習, キャリア入門, キャリア基礎, 地域口腔保健支援実習, 口腔保健衛生学実習, and 口腔保健衛生学実習 indicate Clinical Practice Basic, Introduction to Career, Basis of Career Development, Clinical Oral Health, Clinical Practice and Oral Hygiene Process, Clinical Practice, Clinical Practice and Oral Hygiene Process, respectively.

Figure 2. Category Two Island: Island that consists of syllabuses from two departments. N and T reflect the Departments of Nursing and Oral Health, respectively. 老年看護学概論, 養護活動, 老年看護活動基本実習, 老年看護活動(成人), 基礎看護学実習(看護過程), 基礎看護学実習(看護過程), and 事前及び事後指導 indicate Introduction to Aged Nursing, School Nursing Practicum, Fundamental Nursing Skills Practicum, Objectives of Nursing (Adults), and Introduction to Aged Nursing, Pre- and Post-Practicum Guidance (School Nursing), Objectives of Nursing (Aged), and Basis of Career Development, respectively.
There are also some category three islands, i.e., islands with syllabuses from three or more departments (Figure 3). We also observed a special case of a category three island (Figure 4) that includes syllabuses from many departments while also having a well-defined separation between clusters of syllabuses from the same department.

In this paper, we demonstrate the construction of a curriculum map from course syllabuses by using a combination of cosine similarity, MDS methods, and scatterplots. This DCM provides a possible way to generate a curriculum map capturing all the curricula at a given university, and a way to create curriculum maps more quickly in general, including those that must be recreated every year.

We have used cosine similarity to reflect similarity among syllabuses in this paper. The close proximity of syllabuses A and B in Figure 1 reflects their similar distribution of particular words. Thus, similar subjects are located further apart when their syllabuses contain different distributions of words. This is a limitation of using both cosine similarity and the syllabuses. However, this method holds an advantage in constructing curriculum maps in silico and is a first step toward DCM in silico. To address this limitation, we propose in further research to use Kobe Tokiwa University’s competencies and diploma policies in syllabuses as distance, rather than the syllabuses themselves. The present syllabuses of Kobe Tokiwa University do not contain their competencies or diploma policies but will do so in the near future. If we use distance as both cosine similarity of competencies and diploma policies, rather...
than cosine similarity of syllabuses, we will produce a novel scatterplot as a DCM. For example, consider judgment as a competency. When students want to know how they might learn about judgment in university courses, we can provide a scatterplot reflecting judgment as a DCM. Kobe Tokiwa University currently covers 19 competencies and 4 diploma policies, entailing the construction of 92 curriculum maps, which is impossible. Therefore, DCM may play an important role at the university, allowing us to provide visualization of curricula for each competency and diploma policy as a guideline for students.

Acknowledgments

The authors thank President Kunihiro Ueda. This work was supported by themed research grants 2014 from Kobe Tokiwa University. We would like to thank Editage (www.editage.jp) for English language editing.

References

